插件 Plug-and-Plai
本笔记本在插件检索的基础plugin retrieval上进行了扩展,但从plugnplai
获取了所有工具 - 这是一个AI插件的目录。
设置环境
进行必要的导入等操作。
安装plugnplai库以从https://plugplai.com 目录获取活动插件
pip install plugnplai -q
[notice] A new release of pip available: 22.3.1 -> 23.1.1
[notice] To update, run: pip install --upgrade pip
Note: you may need to restart the kernel to use updated packages.
from langchain.agents import (
Tool,
AgentExecutor,
LLMSingleActionAgent,
AgentOutputParser,
)
from langchain.prompts import StringPromptTemplate
from langchain import OpenAI, SerpAPIWrapper, LLMChain
from typing import List, Union
from langchain.schema import AgentAction, AgentFinish
from langchain.agents.agent_toolkits import NLAToolkit
from langchain.tools.plugin import AIPlugin
import re
import plugnplai
设置LLM
llm = OpenAI(temperature=0)
设置插件
加载和索引插件
# 从plugnplai.com获取所有插件
urls = plugnplai.get_plugins()
# 获取ChatGPT插件 - 仅ChatGPT验证的插件
urls = plugnplai.get_plugins(filter="ChatGPT")
# 获取工作插件 - 仅测试过的插件(正在进行中)
urls = plugnplai.get_plugins(filter="working")
AI_PLUGINS = [AIPlugin.from_url(url + "/.well-known/ai-plugin.json") for url in urls]
工具检索器
我们将使用一个向量存储库为每个工具描述创建嵌入。然后,对于传入的查询,我们可以为该查询创建嵌入,并对相关工具进行相似性搜索。
from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddings
from langchain.schema import Document
embeddings = OpenAIEmbeddings()
docs = [
Document(
page_content=plugin.description_for_model,
metadata={"plugin_name": plugin.name_for_model},
)
for plugin in AI_PLUGINS
]
vector_store = FAISS.from_documents(docs, embeddings)
toolkits_dict = {
plugin.name_for_model: NLAToolkit.from_llm_and_ai_plugin(llm, plugin)
for plugin in AI_PLUGINS
}
Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.
Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.
Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.
Attempting to load an OpenAPI 3.0.2 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.
Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.
Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.
Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.
Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.
Attempting to load a Swagger 2.0 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.
retriever = vector_store.as_retriever()
def get_tools(query):
# 获取包含要使用的插件的文档
docs = retriever.get_relevant_documents(query)
# 获取工具包,每个插件一个
tool_kits = [toolkits_dict[d.metadata["plugin_name"]] for d in docs]
# 获取工具:每个端点一个单独的NLAChain
tools = []
for tk in tool_kits:
tools.extend(tk.nla_tools)
return tools
我们现在可以测试这个检索器,看看它是否有效。
tools = get_tools("What could I do today with my kiddo")
[t.name for t in tools]
['Milo.askMilo',
'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.search_all_actions',
'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.preview_a_zap',
'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.get_configuration_link',
'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.list_exposed_actions',
'SchoolDigger_API_V2.0.Autocomplete_GetSchools',
'SchoolDigger_API_V2.0.Districts_GetAllDistricts2',
'SchoolDigger_API_V2.0.Districts_GetDistrict2',
'SchoolDigger_API_V2.0.Rankings_GetSchoolRank2',
'SchoolDigger_API_V2.0.Rankings_GetRank_District',
'SchoolDigger_API_V2.0.Schools_GetAllSchools20',
'SchoolDigger_API_V2.0.Schools_GetSchool20',
'Speak.translate',
'Speak.explainPhrase',
'Speak.explainTask']
tools = get_tools("what shirts can i buy?")
[t.name for t in tools]
['Open_AI_Klarna_product_Api.productsUsingGET',
'Milo.askMilo',
'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.search_all_actions',
'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.preview_a_zap',
'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.get_configuration_link',
'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.list_exposed_actions',
'SchoolDigger_API_V2.0.Autocomplete_GetSchools',
'SchoolDigger_API_V2.0.Districts_GetAllDistricts2',
'SchoolDigger_API_V2.0.Districts_GetDistrict2',
'SchoolDigger_API_V2.0.Rankings_GetSchoolRank2',
'SchoolDigger_API_V2.0.Rankings_GetRank_District',
'SchoolDigger_API_V2.0.Schools_GetAllSchools20',
'SchoolDigger_API_V2.0.Schools_GetSchool20']
提示模板
提示模板非常标准,因为我们实际上并没有改变实际提示模板的太多逻辑,而是只改变了检索的方式。
# 设置基本模板
template = """Answer the following questions as best you can, but speaking as a pirate might speak. You have access to the following tools:
{tools}
Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question
Begin! Remember to speak as a pirate when giving your final answer. Use lots of "Arg"s
Question: {input}
{agent_scratchpad}"""
自定义提示模板现在具有tools_getter的概念,我们在输入上调用它以选择要使用的工具
from typing import Callable
# 设置提示模板
class CustomPromptTemplate(StringPromptTemplate):
# 要使用的模板
template: str
tools_getter: Callable
def format(self, **kwargs) -> str:
# 获取中间步骤(AgentAction,Observation元组)
# 以特定方式格式化它们
intermediate_steps = kwargs.pop("intermediate_steps")
thoughts = ""
for action, observation in intermediate_steps:
thoughts += action.log
thoughts += f"\nObservation: {observation}\nThought: "
# 将agent_scratchpad变量设置为该值
kwargs["agent_scratchpad"] = thoughts
tools = self.tools_getter(kwargs["input"])
# 从提供的工具列表创建一个工具变量
kwargs["tools"] = "\n".join(
[f"{tool.name}: {tool.description}" for tool in tools]
)
# 创建一个工具名称列表,用于提供的工具
kwargs["tool_names"] = ", ".join([tool.name for tool in tools])
return self.template.format(**kwargs)
prompt = CustomPromptTemplate(
template=template,
tools_getter=get_tools,
# 这省略了`agent_scratchpad`,`tools`和`tool_names`变量,因为这些是动态生成的
# 这包括`intermediate_steps`变量,因为需要它
input_variables=["input", "intermediate_steps"],
)
输出解析器
输出解析器与上一个笔记本中的相同,因为我们没有改变输出格式的任何内容。
class CustomOutputParser(AgentOutputParser):
def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]:
# 检查代理是否应该完成
if "Final Answer:" in llm_output:
return AgentFinish(
# 返回值通常是一个带有单个`output`键的字典
# 目前不建议尝试其他任何内容 :)
return_values={"output": llm_output.split("Final Answer:")[-1].strip()},
log=llm_output,
)
# 解析出操作和操作输入
regex = r"Action\s*\d*\s*:(.*?)\nAction\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)"
match = re.search(regex, llm_output, re.DOTALL)
if not match:
raise ValueError(f"Could not parse LLM output: `{llm_output}`")
action = match.group(1).strip()
action_input = match.group(2)
# 返回操作和操作输入
return AgentAction(
tool=action, tool_input=action_input.strip(" ").strip('"'), log=llm_output
)
output_parser = CustomOutputParser()
设置LLM、停止序列和代理
与上一个笔记本相同
llm = OpenAI(temperature=0)
# 由LLM和提示组成的LLM链
llm_chain = LLMChain(llm=llm, prompt=prompt)
tool_names = [tool.name for tool in tools]
agent = LLMSingleActionAgent(
llm_chain=llm_chain,
output_parser=output_parser,
stop=["\nObservation:"],
allowed_tools=tool_names,
)
使用代理
现在我们可以使用它了!
agent_executor = AgentExecutor.from_agent_and_tools(
agent=agent, tools=tools, verbose=True
)
agent_executor.run("what shirts can i buy?")
> 进入新的AgentExecutor链...
Thought: I need to find a product API
Action: Open_AI_Klarna_product_Api.productsUsingGET
Action Input: shirts
Observation:I found 10 shirts from the API response. They range in price from $9.99 to $450.00 and come in a variety of materials, colors, and patterns. I now know what shirts I can buy
Final Answer: Arg, I found 10 shirts from the API response. They range in price from $9.99 to $450.00 and come in a variety of materials, colors, and patterns.
> 完成链。
'Arg, I found 10 shirts from the API response. They range in price from $9.99 to $450.00 and come in a variety of materials, colors, and patterns.'