Skip to main content

Log10(日志10)

本页面介绍如何在LangChain中使用Log10

什么是Log10?

Log10是一个无代理的LLM数据管理和应用开发平台,是一个开源项目(GitHub链接),它可以让您记录、调试和标记Langchain的调用。

快速入门

  1. log10.io上创建免费账户。
  2. 从设置和组织选项卡中获取您的LOG10_TOKENLOG10_ORG_ID,并将其设置为环境变量。
  3. 还需要将LOG10_URL=https://log10.io和您通常使用的LLM API密钥(例如OPENAI_API_KEYANTHROPIC_API_KEY)添加到您的环境中。

如何启用Langchain的Log10数据管理

与log10的集成非常简单,只需一行代码即可实现log10_callback的集成,如下所示:

from langchain.chat_models import ChatOpenAI
from langchain.schema import HumanMessage

from log10.langchain import Log10Callback
from log10.llm import Log10Config

log10_callback = Log10Callback(log10_config=Log10Config())

messages = [
HumanMessage(content="You are a ping pong machine"),
HumanMessage(content="Ping?"),
]

llm = ChatOpenAI(model_name="gpt-3.5-turbo", callbacks=[log10_callback])

Log10 + Langchain + Logs文档

更多详细信息 + 截图,包括自托管日志的说明。

如何在Log10中使用标签

from langchain import OpenAI
from langchain.chat_models import ChatAnthropic
from langchain.chat_models import ChatOpenAI
from langchain.schema import HumanMessage

from log10.langchain import Log10Callback
from log10.llm import Log10Config

log10_callback = Log10Callback(log10_config=Log10Config())

messages = [
HumanMessage(content="You are a ping pong machine"),
HumanMessage(content="Ping?"),
]

llm = ChatOpenAI(model_name="gpt-3.5-turbo", callbacks=[log10_callback], temperature=0.5, tags=["test"])
completion = llm.predict_messages(messages, tags=["foobar"])
print(completion)

llm = ChatAnthropic(model="claude-2", callbacks=[log10_callback], temperature=0.7, tags=["baz"])
llm.predict_messages(messages)
print(completion)

llm = OpenAI(model_name="text-davinci-003", callbacks=[log10_callback], temperature=0.5)
completion = llm.predict("You are a ping pong machine.\nPing?\n")
print(completion)

您还可以混合使用直接的OpenAI调用和Langchain LLM调用:

import os
from log10.load import log10, log10_session
import openai
from langchain import OpenAI

log10(openai)

with log10_session(tags=["foo", "bar"]):
# 记录直接的OpenAI调用
response = openai.Completion.create(
model="text-ada-001",
prompt="Where is the Eiffel Tower?",
temperature=0,
max_tokens=1024,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
)
print(response)

# 通过Langchain记录调用
llm = OpenAI(model_name="text-ada-001", temperature=0.5)
response = llm.predict("You are a ping pong machine.\nPing?\n")
print(response)

如何调试Langchain调用

调试示例

更多Langchain示例