Skip to main content

自动修复解析器

该输出解析器包装了另一个输出解析器,当第一个解析器失败时,它会调用另一个LLM来修复任何错误。

但是除了抛出错误之外,我们还可以做其他事情。具体来说,我们可以将格式错误的输出以及格式化的指令传递给模型,并要求它进行修复。

在这个示例中,我们将使用上面的Pydantic输出解析器。如果我们将不符合模式的结果传递给它,会发生以下情况:

from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate  
from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.output_parsers import PydanticOutputParser
from pydantic import BaseModel, Field, validator
from typing import List

class Actor(BaseModel):
name: str = Field(description="演员的姓名")
film_names: List[str] = Field(description="他们主演的电影名称列表")

actor_query = "生成一个随机演员的电影作品列表。"

parser = PydanticOutputParser(pydantic_object=Actor)

misformatted = "{'name': 'Tom Hanks', 'film_names': ['Forrest Gump']}"

parser.parse(misformatted)
    ---------------------------------------------------------------------------

JSONDecodeError Traceback (most recent call last)

File ~/workplace/langchain/langchain/output_parsers/pydantic.py:23, in PydanticOutputParser.parse(self, text)
22 json_str = match.group()
---> 23 json_object = json.loads(json_str)
24 return self.pydantic_object.parse_obj(json_object)


File ~/.pyenv/versions/3.9.1/lib/python3.9/json/__init__.py:346, in loads(s, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw)
343 if (cls is None and object_hook is None and
344 parse_int is None and parse_float is None and
345 parse_constant is None and object_pairs_hook is None and not kw):
--> 346 return _default_decoder.decode(s)
347 if cls is None:


File ~/.pyenv/versions/3.9.1/lib/python3.9/json/decoder.py:337, in JSONDecoder.decode(self, s, _w)
333 """Return the Python representation of ``s`` (a ``str`` instance
334 containing a JSON document).
335
336 """
--> 337 obj, end = self.raw_decode(s, idx=_w(s, 0).end())
338 end = _w(s, end).end()


File ~/.pyenv/versions/3.9.1/lib/python3.9/json/decoder.py:353, in JSONDecoder.raw_decode(self, s, idx)
352 try:
--> 353 obj, end = self.scan_once(s, idx)
354 except StopIteration as err:


JSONDecodeError: Expecting property name enclosed in double quotes: line 1 column 2 (char 1)


During handling of the above exception, another exception occurred:


OutputParserException Traceback (most recent call last)

Cell In[6], line 1
----> 1 parser.parse(misformatted)


File ~/workplace/langchain/langchain/output_parsers/pydantic.py:29, in PydanticOutputParser.parse(self, text)
27 name = self.pydantic_object.__name__
28 msg = f"Failed to parse {name} from completion {text}. Got: {e}"
---> 29 raise OutputParserException(msg)


OutputParserException: Failed to parse Actor from completion {'name': 'Tom Hanks', 'film_names': ['Forrest Gump']}. Got: Expecting property name enclosed in double quotes: line 1 column 2 (char 1)

现在我们可以构建并使用OutputFixingParser。这个输出解析器接受另一个输出解析器和一个LLM作为参数,用于尝试纠正任何格式错误。

from langchain.output_parsers import OutputFixingParser  

new_parser = OutputFixingParser.from_llm(parser=parser, llm=ChatOpenAI())

new_parser.parse(misformatted)

输出结果为:

Actor(name='Tom Hanks', film_names=['Forrest Gump'])